
Pharmaceutical applications of cyclodextrins: effects on drug
permeation through biological membranesjphp_1279 1119..1135

Thorsteinn Loftssona and Marcus E. Brewsterb

aFaculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata, Reykjavik, Iceland and
bPharmaceutical Development and Manufacturing Sciences, Janssen Research and Development, Johnson
& Johnson, Scheperstraat, Beerse, Belgium

Abstract

Objectives Cyclodextrins are useful solubilizing excipients that have gained currency in
the formulator’s armamentarium based on their ability to temporarily camouflage undesir-
able physicochemical properties. In this context cyclodextrins can increase oral bioavail-
ability, stabilize compounds to chemical and enzymatic degradation and can affect
permeability through biological membranes under certain circumstances. This latter prop-
erty is examined herein as a function of the published literature as well as work completed
in our laboratories.
Key findings Cyclodextrins can increase the uptake of drugs through biological barriers if
the limiting barrier component is the unstirred water layer (UWL) that exists between the
membrane and bulk water. This means that cyclodextrins are most useful when they interact
with lipophiles in systems where such an UWL is present and contributes significantly to
the barrier properties of the membrane. Furthermore, these principles are used to direct the
optimal formulation of drugs in cyclodextrins. A second related critical success factor in the
formulation of cyclodextrin-based drug product is an understanding of the kinetics and
thermodynamics of complexation and the need to optimize the cyclodextrin amount and
drug-to-cyclodextrin ratios. Drug formulations, especially those targeting compartments
associated with limited dissolution (i.e. the eye, subcutaneous space, etc.), should be care-
fully designed such that the thermodynamic activity of the drug in the formulation is optimal
meaning that there is sufficient cyclodextrin to solubilize the drug but not more than that.
Increasing the cyclodextrin concentration decreases the formulation ‘push’ and may reduce
the bioavailability of the system.
Conclusions A mechanism-based understanding of cyclodextrin complexation is essential
for the appropriate formulation of contemporary drug candidates.
Keywords absorption, complex, cyclodextrin, membrane, permeation

Introduction

Aqueous solubility and the ability of solutes to permeate biological membranes are the main
physicochemical properties that determine the ‘drugability’ of a new chemical entity (NCE).
While 40% of currently marketed drugs are poorly soluble based on the Biopharmaceutical
Classification System (BCS), about 90% of NCEs may be characterized in this way. Poor
aqueous solubility is an important factor associated with poor oral bioavailability. Poor
aqueous solubility can also hamper delivery via non-oral routes such as those related to
buccal, ocular, nasal, pulmonary, rectal and vaginal administration. Only the dissolved drug
molecules are able to penetrate biological membranes such as the mucosa. Numerous
methods have been proposed for enhancing aqueous solubility of poorly soluble drugs and
NCEs, including both chemical methods such as prodrugs and physical methods such as
production of higher energy polymorphs and the formation of water-soluble complexes. One
beneficial solubilizing technique involves the use of water-soluble cyclodextrin (CD) com-
plexes.[1] CD complexation of a poorly soluble lipophile will improve its aqueous solubility
but the complex itself is, in general, unable to permeate biological membranes per se.
Consequently, CDs can both enhance and hamper drug permeation through biological
membranes. A good knowledge of how CDs affect drug permeation through membranes is
a prerequisite for the successful application of CDs. Here we use well-established thermo-
dynamic principles and mathematical models to explain how CDs enhance and hamper drug
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permeation through membranes. Our observations are based
on a thoughtful review of the available literature on CDs and
drug permeation.

Cyclodextrins

The physicochemical and biological properties of CDs and
their pharmaceutical applications have recently been
reviewed.[1] We present here a brief description of the main
structural and physicochemical characteristics that are rel-
evant to drug permeation through biological membranes. CDs
are cyclic oligosaccharides formed by six (aCD), seven
(bCD), eight (gCD) or more (a-1,4)-linked d-glucopyranose
units (Table 1). Due to the chair structure of the glucopyra-
nose units the molecules are cone-shaped with the secondary
hydroxy groups extending from the wider edge and the
primary hydroxyl groups from the narrow edge. This provides
a CD molecule with a hydrophilic outer surface and somewhat
lipophilic central cavity. Although the natural aCD, bCD and
gCD and their complexes are hydrophilic, their solubility in
aqueous solutions is somewhat limited, mainly due to the
relatively high crystal lattice energy and intramolecule hydro-
gen bonding. Random substitution of the hydroxy groups,
even by lipophilic groups, gives amorphous mixtures of
water-soluble CD derivatives.[2,6] CD derivatives of pharma-
ceutical interest include the hydroxypropylated bCD and gCD
(HPbCD and HPgCD), the randomly methylated bCD
(RMbCD) and sulfobutyl ether bCD sodium salt (SBEbCD).

As oligosaccharides, the natural aCD, bCD and gCD possess
many of the same physicochemical and biological character-
istics as the water-soluble linear dextrins. However, due to
their cyclic nature, they are more resistant towards both enzy-
matic and non-enzymatic hydrolysis than the linear ana-
logues. CDs are resistant to b-amylases that hydrolyse starch
from the non-reducing end of the glucose polymer, but are
slowly hydrolysed by a-amylases that hydrolyse starch from
within the carbohydrate chain. The hydrolytic rate depends on
the ring size and the fraction of free CD. CDs resist hydrolysis
by obscuring all bridge oxygens within the central cavity and,
thus, free CD is hydrolysed more rapidly than CD bound to a
drug in a complex and the rate of hydrolysis increases with
increasing cavity size.[7] For example, aCD and bCD are
essentially stable towards a-amylase in saliva whereas gCD is
rapidly digested by salivary and pancreatic a-amylase.[8,9] All
the natural CDs and their above-mentioned derivatives are
susceptible to bacterial digestion in the gastrointestinal
tract.[4,5,10–14]

CDs are able to form inclusion complexes with many drugs
by taking up lipophilic substructures of drug molecules into
their central cavity. No covalent bonds are formed or broken
during the complex formation and in aqueous solutions, drug
molecules bound within the CD cavity are in dynamic equi-
librium with free drug molecules in the solution. Complexes
are continuously being formed and dissociated at rates close
to the diffusion-controlled limit.[15] A 1 : 1 drug : CD complex,
where one drug molecule forms a complex with one CD

Table 1 Structure of b-cyclodextrin and physiochemical characteristics of some cyclodextrins of pharmaceutical interest[2]
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Properties a-Cyclodextrin b-Cyclodextrins g-Cyclodextrins

aCD bCD HPbCD SBEbCD RMbCD gCD HPgCD

Molar substitution – – 0.65 0.9 1.8 – 0.6
Molecular weight of

anhydrous compound (Da)
972.8 1135 1400 2163 1312 1297 1576

Calculated LogK(octanol/water) at
25°Ca

-13 -14 -11 <-10 -6 -17 -13

Solubility in water at 25°C
(mg/ml)b

130 18.4 >600 >500 >600 249 >600

H donor 18 21 21 15 8 24 24
H acceptor 30 35 39 53 35 40 45
Approximate oral

bioavailability in rats (%)c

2 to 3 ~0.6 �3 1.6 �12 <0.1 <0.1

aFrom SciFinder, ACS, USA (scifinder.cas.org) and ChemExper Chemical Directory (http://www.chemexper.com). bFrom [3]. c% absorbed intact after
oral administration to rats. From [4,5] and the cyclodextrin producers (i.e. Wacker Chemie AG (Germany) and CyDex Pharmaceuticals, Inc. (USA)).
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molecule, is the most common form of CD complex in dilute
aqueous solutions. The stability of a drug/CD complex is
frequently assessed by using the equilibrium constant (K1:1) of
the 1 : 1 drug : CD complex in an aqueous complexation
media:

drug CD drug CD+ K1:1� ⇀���↽ ��� / (1)

The value of K1:1 is frequently between 101 and 103 m-1. K1:1

with greater value than 5 ¥ 103 m-1 is rarely observed. There
are, however, several exceptions. Sugammadex is a gCD
derivative specifically designed to tightly bind the neuromus-
cular blocking agent rocuronium and some ozonide drug can-
didates have been shown to be tightly bound to SBEbCD.[16–18]

The values of the equilibrium constants for these drug/CD
complexes are greater than about 106 m-1 or large enough to
affect the pharmacokinetics of the drugs after parenteral
administration. It has been argued that the stability constants
of drug/CD complexes must be greater than 105 m-1 to have a
significant effect on the drug pharmacokinetics after
parenteral administration.[11] The major driving force for drug
release from the complexes is simple dilution although other
mechanisms, such as direct drug partitioning from the
complex to lipophilic membrane tissue, do contribute to rapid
drug release from the complex.

The ability of a molecule to permeate lipophilic epithelia
depends on its molecular weight, structure and physicochemi-
cal properties consistent with Fick’s Law and the Stokes-
Einstein equation. CDs permeate biological membranes via
passive diffusion. Passive permeation through a lipophilic
epithelium depends on the lipophilicity of the permeating
molecule and the extent of absorption is frequently correlated
to the partition coefficient between octanol and water. Lipin-
ski’s rule of five states that poor oral absorption or permeation
are more likely when a molecule (1) has more than five hydro-
gen bond donors (expressed as the sum of OHs and NHs), (2)
has more than more than 10 hydrogen bond acceptors (N or O
atoms), (3) has octanol–water partition coefficient
(LogK(octanol/water)) greater than 5, and/or (4) has molecular
weight greater than 500 Da.[19,20] CDs violate three of these
rules and although their LogK(octanol/water) is less than 5 their
hydrophilicity (LogK(octanol/water) between -6 and -17) is high
and, thus, they only permeate biological membranes with
great difficulty (Table 1). The oral bioavailability of the
hydrophilic CDs (i.e. aCD, bCD, CD, HPbCD, HPgCD and
SBEbCD) is less than 3% and less than 12% for the more
lipophilic RMbCD (Table 1). The oral bioavailability of
HPbCD in humans is between 0.5 and 3.3% with 50–65% of
the oral dose excreted unchanged in the faeces and the remain-
der mainly being metabolized by bacteria in the colon.[1] Thus,
in general, CDs and drug/CD complexes do not permeate
lipophilic membranes.

Cyclodextrins as absorptions enhancers

There are numerous publications on the effects of CDs on
drug delivery through membranes and oral bioavailability. In
most of these studies, CDs enhance drug delivery through the
membranes; in some they have no effect and in a few CDs

reduce or prevent drug permeation through the membranes.
Some of these publications are provided in the accompanying
Tables (Tables 2–5).

Dermal and transdermal drug delivery

A review of the studies listed in Table 2 reveals that, depend-
ing on the experimental conditions and vehicle composition,
CDs can either increase or decrease drug permeation through
skin. The main barrier to percutaneous absorption of hydro-
philic CDs is the outermost layer of the skin (i.e. the stratum
corneum). For example, only 0.02% of topically applied
radiolabelled HPbCD was absorbed into intact hairless mouse
skin under occlusive conditions during a 24-h period but in the
same study about 24% of HPbCD was absorbed into stripped
skin where stratum corneum had been removed.[49] Lipophilic
CD derivatives, like the methylated CDs, are absorbed to a
somewhat greater extent into skin but still the uptake is neg-
ligible or only 0.3% over 24 h for dimethyl-b-cyclodextrin
(DMbCD).[63,64] Although CDs can, under certain conditions,
extract lipophilic components from skin, pretreatment of skin
with hydrophilic CDs does not, in general, enhance perme-
ation.[25,27,33,52,65,66] Hydrophilic CDs reduce the drug release
from water-in-oil (w/o) creams but enhance the release and
drug permeation from oil-in-water (o/w) creams.[34,67] CDs are
only able to enhance dermal and transdermal drug delivery
from aqueous drug vehicles or through aqueous diffusion
layers at the skin exterior.[68] Excess CD, more than is needed
to solubilize a lipophilic drug in an aqueous vehicle, will
reduce drug permeation into skin. Maximum enhancement is
obtained when just enough CD is used to solubilize the lipo-
philic drug.[27–29,35,64,69] To this point, hydrophilic CDs have
been added to sunscreen formulations to reduce absorption of
lipophilic sunscreen agents into skin.[23,69–71]

Topical drug delivery to the eye

Examples of CD-containing ophthalmic formulations and
topical drug delivery to the eye are listed in Table 3. The
aqueous tear fluid and the mucus layer on the eye surface form
an aqueous diffusion barrier for topical drug delivery to the
eye. CDs can enhance delivery of lipophilic drugs through this
barrier.[107,109,110] As in the case of dermal and transdermal drug
delivery, excess CDs (i.e. more than is needed to solubilize the
drug in the aqueous eye drop formulation) can result in
decreased drug delivery into the eye.[72,75,96] Another important
observation is that hydrophilic CDs, like HPbCD, do not
enhance delivery of hydrophilic drugs into the eye after
topical administration.[100,111] Furthermore, CDs are known to
alleviate local drug irritation in the eye.[112–114]

Nasal, buccal, pulmonary, rectal and
vaginal drug delivery

Some examples of reports on CD-containing formulations for
nasal, buccal, pulmonary, rectal and vaginal drug delivery are
shown in Table 4. The enzymatic activity in these mucosal
membranes can be quite high and, thus, the observed perme-
ation enhancement is sometimes due to enhanced drug stabil-
ity through complexation, especially in the case of proteins
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and peptides.[10] Methylated bCD, which is a somewhat lipo-
philic CD derivative, has been shown to act as a chemical
penetration enhancer in nasal delivery, penetrating into the
nasal epithelia and decreasing its barrier properties.[142,143]

However, hydrophilic CDs do not readily permeate the nasal
mucosa and excess CD will reduce drug absorption from the
nasal cavity.[144,145] Hydrophilic CDs have been used success-
fully in a number of sublingual and buccal drug formulations,
mainly to enhance drug dissolution in the saliva and to carry
lipophilic drug molecules through the aqueous saliva diffu-
sion barrier to the epithelial surface. CDs are more readily
absorbed from the lungs than from other routes of delivery
(oral, dermal, nasal, vaginal and rectal), which can impact
their usage in pulmonary drug delivery; however, CDs that are
considered to be safe for parenteral administration are also
considered appropriate for pulmonary use.[10,146–148]

Oral drug delivery

A variety of examples of the usage of CDs in oral formula-
tions are shown in Table 5. A more detailed analysis of the
effects of CDs on oral drug bioavailability was performed by
Carrier et al.,[206] who showed that better bioavailability was
obtained from drug/CD complex than from physical mixtures

of drugs and CDs, and that lipophilic drugs (LogK(octanol/

water) > 2.5) of low aqueous solubility (typically < 1 mg/ml)
with moderate binding constants (K < 5000 m-1) were espe-
cially suitable for oral CD-containing formulations. For these
applications, the drug should be moderately potent
(dose < 100 mg) and the drug : CD ratio should preferably be
1 : 2 or greater. However, CDs can have other effects, such as
drug stabilization, generation and stabilization of supersatu-
rated drug solutions and inhibition of drug efflux, that are
difficult to account for and, thus, these general guidelines do
not apply to all reported studies (Table 5). Also, it has been
shown that the effective thickness of the unstirred water layer
(UWL) in the gastrointestinal tract decreases with increasing
CD concentration, adding to the difficulties of creating
general rules for the effect of CDs on drug bioavailability
enhancement.[207] The UWL forms an aqueous drug diffusion
barrier at the membrane surface. Other studies have related
observed CD effects on oral drug bioavailability to the BCS
and shown that while, in general, CDs have very little effect
on bioavailability of BCS class I and III drugs, they can have
significant effect on class II and IV drugs.[208,209] Furthermore,
aCD (FBCX tablets containing 1000 mg aCD; ArtJen,
Canada) is used to complex triglycerides in the gastrointesti-
nal tract and prevent their absorption. The fact that physical

Table 2 Examples of cyclodextrin-containing dermal formulations and transdermal drug-delivery studies

Drug Cyclodextrin Reference

Acitretin RMbCD [21]

Alkannin HPbCD [22]

Avobenzone HPbCD [23]

Beclometasone dipropionate gCD [24]

4-Biphenylylacetic acid bCD, DMbCD, HPbCD [25,26]

Bupranolol HPbCD, MbCD [27]

Capsaicin HPbCD [28]

Celecoxib DMbCD [29]

Curcumin HPbCD, HPgCD [30]

Dexamethasone acetate bCD, HPbCD [31]

17b-Estradiol HPbCD [32]

Hydrocortisone bCD, CMbCD, HPbCD, MLbCD, RMbCD [32–39]

Ibuprofen HPbCD [40]

Indometacin bCD, DEbCD, DMbCD [41,42]

Ketoprofen HPbCD [43]

Liarozole HPbCD [44]

Lidocaine DMbCD, HPbCD, SBEbCD [45]

Loteprednol etabonate DMbCD [46]

Melatonin HPbCD [47]

Metopimazine MbCD [48]

Methyl paraben HPbCD [49]

Miconazole aCD, HPbCD [50]

Naproxen bCD [51]

Piribedil RMbCD [52]

Piroxicam HPbCD [53,54]

Prednisolone bCD, gCD [55]

Prostaglandin E1 aCD, bCD, CMEbCD, [56–59]

Shikonin HPbCD [22]

Sulfanilic acid bCD, DMbCD [41]

Testosterone HPbCD [32]

Tolnaftate bCD, bCD-polymer [60]

Tretinoin bCD, HPbCD, DMbCD [61,62]

Triamcinolone HPbCD [33]
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mixtures of CDs and drugs have less effect on oral drug
bioavailability than prepared complexes, that CDs have little
effect on BCS class I and II drugs, and that CDs can be used
to prevent gastrointestinal absorption strongly suggest that
CDs do not enhance oral drug bioavailability by decreasing
the barrier function of the epithelial cell layer but act by other
mechanisms.

Caco-2

The best exploited epithelial cell line for in-vitro permeation
studies is Caco-2, a human colon carcinoma cell line that
develops microvilli on its apical surface. In the Caco-2 per-
meability cell culture experimental setup, the aqueous donor
phase is usually unstirred, resulting in a relatively thick UWL
that forms an aqueous diffusion barrier at the apical surface of
the relatively permeable cell membrane.[210,211] Studies have
shown that while CDs can enhance drug permeation through
cell layers, an excess of hydrophilic CD will reduce drug
permeation through the cell membrane.[212–214] Lipophilic CDs,
like methylated bCD, increase drug permeation through
Caco-2 by depletion of cholesterol from the membrane.[215]

The parallel artificial membrane
permeation assay (PAMPA)

The parallel artificial membrane permeation assay (PAMPA)
is a method that determines the permeability of substances
from a donor compartment, through an artificial membrane,
into an acceptor compartment. The membrane consists of a
microfilter disc coated with a 2% (w/v) dodecane solution of
dioleylphosphadityl choline under conditions that favour for-
mation of a multilamellar structure.[216–218] Previously, we have
shown that in the PAMPA system, the thickness of the UWL
and its contribution to the overall membrane barrier depends
on the stirring rate.[219] In the absence of HPbCD, drug per-
meability increased with decreasing UWL thickness to a
certain minimum values of about 40 mm. Addition of HPbCD
to systems exhibiting UWL thicknesses greater than 40 mm
significantly increased the drug flux through PAMPA. The
effect of HPbCD appeared also to be related to the stability
constant (K) of the drug/CD complex with flux increasing
with increasing K-value.[219] This suggests that hydrophilic
CDs enhance flux when the UWL resistance (i.e. the aqueous
diffusion barrier) makes a significant contribution to the
overall barrier resistance.

What do these studies mean?

Some general observations can be made from these studies on
the effects of CDs on drug permeation through the various
membrane systems (Figure 1). First, the studies have shown
that CDs and their complexes do not, in general, permeate
lipophilic biomembranes (i.e. their KM/D ª 0). The drug mol-
ecules have to be released from the complexes before they can
permeate the membranes. Second, CDs are unable to enhance
drug delivery from non-aqueous vehicles through biomem-
branes (i.e. no enhancement if no UWL is present at the
membrane surface). Third, CDs do not, in general, enhance

Table 3 Examples of cyclodextrin-containing ophthalmic formulations
and topical drug delivery to the eye

Drug Cyclodextrin Reference

Acetazolamide HPbCD [72–74]

Anandamides HPbCD [75,76]

Cannabinoids (various) HPbCD [77]

Ciclosporin aCD [78–80]

Dehydroepiandrosterone HPbCD [81]

Dexamethasone HPbCD, gCD [82–88]

Diclofenac HPbCD, RMbCD [89]

Dipivefrine SBEbCD [90]

Disulfiram HPbCD [91,92]

Dorzolamide RMbCD, gCD [88,93]

Enalaprilat HPbCD [94]

Enalapril maleate HPbCD [94]

Ethoxyzolamide HPbCD [72]

Fluorometholone HPgCD [95]

Hydrocortisone HPbCD [96,97]

Ketoconazole HPbCD [98]

Loteprednol etabonate HPbCD, DMbCD [99]

Pilocarpine aCD, bCD, HEbCD, HPbCD,
SBEbCD

[100–103]

Prostaglandins HPbCD [104]

Rufloxacin HPbCD [105]

Thalidomide HPbCD [106]

D9-Tetrahydrocannobinol aCD [107,108]

Table 4 Examples of cyclodextrin-containing formulations for nasal,
buccal-sublingual, pulmonary, rectal and vaginal drug delivery

Drug Cyclodextrin Reference

Nasal drug delivery:
Acyclovir HPbCD [115]

17b-Estradiol DMbCD [116]

Insulin aCD, DNaCD, HPaCD,
bCD, DMbCD, HPbCD

[117]

Midazolam SBEbCD [118,119]

Prostaglandin E1 HPbCD [120]

Buccal and sublingual drug delivery:
Androstenediol HPbCD [121]

Atenolol bCD, MbCD, RMbCD [122,123]

Cannabidiol bCD [124]

Ciclosporin aCD [125]

Clomipramide HPbCD [126]

Danazol HPbCD, SBEbCD [127,128]

17b-Estradiol HPbCD [129–131]

Flufenamic acid HPbCD [132]

D9-Tetrahydrocannabinol bCD [133]

Pulmonary drug delivery:
Beclometasone gCD [134]

Budesonide gCD [135]

Ciclosporin HPaCD [136]

Itraconazole HPbCD [137]

Rectal drug delivery:
Edaravone HPbCD [138]

Flurbiprofen HPbCD [139]

Vaginal drug delivery:
Itraconazole HPbCD [140]

Natamycin gCD [141]

Cyclodextrins and drug permeation Thorsteinn Loftsson and Marcus E. Brewster 1123
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membrane permeation of hydrophilic water-soluble drugs.
Fourth, excess CD, more than is needed to solubilize the drug,
will hamper drug permeation. Excess CD decreases the
amount of free drug molecules in the UWL (Figure 1). Fifth,
CDs enhance membrane permeation of lipophilic drugs when
the UWL contributes to the overall barrier function of the
lipophilic membrane. Sixth, CDs are able to prevent enzy-
matic degradation of drugs at the aqueous membrane exterior.

Membranes and permeation enhancers

Internal and external body surfaces are in most cases covered
with epithelium of one type or another. In general, the epithe-
lium consists of a collagen matrix layer and basal lamina and
is covered by one or more layers of epithelial cells. Most
drugs permeate epithelia cell layers via passive transport.
However, numerous transport systems have been identified in
almost all epithelia.[220] In skin, the outermost cells become
keratinized and die. The surface of living epithelia is covered
with mucus, a gel-like fluid containing mainly water (90–
98%) and mucin (2–5%).[221] Mucins are large flexible glyco-
proteins with molecular weight ranging from 0.5 MDa to
20 MDa. Mucin forms hydrogen bonds with surrounding
water molecules leading to significant increase in the thick-
ness and the viscosity of the mucus in, for example, the
gastrointestinal tract, the respiratory tract, the ocular-rhino-
otolaryngeal tracts and the reproductive tract, forming an
aqueous diffusion barrier to drug absorption into the body.
The tear film on the eye surface (including mucus) is about
8 mm thick but the thickness of the gastrointestinal mucus
layer can range from about 100 mm to 600 mm.[68,222–225] At low
shear rates, the bulk viscosity of healthy human mucus is
typically 1000–10 000 times greater than that of water.
However, the flexible mucin chains form an aqueous matrix
(hydrogel) where the micro-viscosity (i.e. the viscosity
between the mucin fibres) can be as low as that of pure

water.[226–229] This aqueous matrix forms an unstirred water
layer (UWL) that creates an aqueous diffusion barrier that
impedes drug permeation through mucosal barriers.[229] Based
on determinations of diffusion constants in mucus compared
with water, as a function of the hydrodynamic diameter of the
diffusing particles, the mesh spacing in mucus is about
400 nm.[227]

Permeation enhancers

Most permeation enhancers enhance drug uptake through bio-
logical membranes by affecting the barrier properties of the
membrane itself, either by altering the structure of the cell
membrane (passive transcellular route) or by opening of the
tight junctions (paracellular route).[230–232] For example,
chemical enhancers, such as fatty acids, alcohols, amines and
amides, permeate into the membrane where they may alter the
overall solvent potential of the membrane and disrupt the
ordered lipid structure within the membrane barrier thereby
lowering the viscosity. These physicochemical changes facili-
tate drug partition from the exterior into the membrane as well
as drug permeation through the membrane barrier. Physical
enhancers such as ultrasound decrease the barrier function
and increase the kinetic energy of drug molecules through
wave energy and cavitation mechanisms while iontophoresis
enhances transmembrane transport of ionized drug molecules
by applying a small electrical current across the membrane
barrier. All of these techniques decrease, in one way or
another, the barrier property of the membrane itself. Penetra-
tion enhancers alter membrane permeation of both hydro-
philic and lipophilic drugs and, in general, from both non-
aqueous and aqueous donor phases. Having said this, there are
other methods that do not directly affect membrane structure,
including the formation supersaturated drug solutions,[233]

co-administration of efflux transporter inhibitors[234] and CDs.

Thermodynamic considerations

The driving force for passive drug diffusion through the UWL
or a vehicle is the gradient of the chemical potential (m).
Likewise, drug partitioning between the UWL and the mem-
brane is controlled by the chemical potential. However, it is
more common to think of diffusion and partition in terms of
drug concentration. For example, according to Fick’s first law
the driving force for drug diffusion is the drug concentration
gradient (Figure 2). Still it must be remembered that for a
given vehicle or formulation, the highest drug chemical poten-
tial will result in the highest drug bioavailability.[235,236] The
activity (a2) of a drug is the product of its activity coefficient
(g2) and its concentration in molality (m2):

a m2 2 2= γ (2)

and

μ μ μ γθ θ
2 2 2 2 2 2= + = +RTlna RTln m( ) (3)

where m2 is the chemical potential of the drug, μθ
2 is the

chemical potential in a given standard state, R is the gas

Aqueous
solution

UWL+

+

Membrane

KM/D ≈ 0 KM/D ≈ 0 KM/D >> 0

Figure 1 Scheme showing drug permeation from a vehicle consisting
of a drug dissolved in an aqueous CD solution. The unstirred water layer
(UWL) forms an aqueous drug diffusion barrier and the membrane
surface. The membrane forms a lipophilic membrane barrier. KM/D is the
partition coefficient of the complex, free CD or the drug between the
membrane and the UWL.
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constant and T is the temperature in Kelvin. The thermody-
namic definition of the partition coefficient (Ko/w) of a drug
between organic (o) and aqueous (w) phase is:

μ μ γ
γ

γ
γ

θ θ
w o o

w

o o

w w

o

w
o w

RT
ln

a

a
ln

C

C
ln lnK

− = ≈ ⋅
⋅

= + / (4)

Equation 4 states that equilibrium between the two phases is
attained when the chemical potential of the drug in one phase
(e.g. the aqueous membrane exterior) is equal to the chemical
potential in the other phase (e.g. the membrane itself). Ther-
modynamic activity is equal to unity in saturated solutions
and, thus, many ointments and creams consist of finely
divided drug suspensions. In this situation the drug has the
highest potential to leave the vehicle and permeate into and
through the membrane barrier. The activity is greater than
unity in supersaturated solutions but these are physically
metastable states. Addition of solubilizers, such as CDs, to an
aqueous drug solution will lower the drug activity (i.e. lowers
gw in Equation 4) and, thus, the potential of the drug to exit the
formulation.[237] Addition of solubilizers to aqueous drug sus-
pension, increasing the amount of dissolved drug while
keeping the solution saturated with drug, will not lower the
drug activity. Under such condition the thermodynamic activ-
ity will remain equal to unity and, thus, the dissolved drug
molecules are at their highest ‘exiting’ potential while the
total amount of dissolved drug is increased.

Theoretical background

Most biological membranes are multilayer barriers and most
contain various transport systems. In addition, the majority of

drugs permeate biological membranes via passive diffusion
and all drugs by definition permeate the UWL (the aqueous
diffusion barrier at the membrane surface) via passive diffu-
sion. Even drugs that are carried through membranes by some
active membrane transporters must passively permeate the
UWL to reach the transporters. The UWL can be as thick as
100 mm (or even more), in the human small intestine, or as
thin as a fraction of mm on, for example, the skin surface.[222]

Under in-vitro conditions, the thickness of the UWL can be
well above 1000 mm in an unstirred aqueous donor phase and
in vivo its thickness is frequently 10–100 mm. However, the
thickness of the UWL depends also on the physicochemical
properties of the permeating drug molecule, including its
ability to form ionic and hydrogen bonds with mucin, and thus
a fixed UWL thickness for all drugs does not exist.[238]

In the following section it is assumed that a biological
membrane consists of only two layers (i.e. an UWL and a
lipophilic cell membrane). Furthermore it is assumed that
drug molecules permeate both these layers via passive diffu-
sion. The mathematical model is based on work by Higu-
chi,[235] Zwolinski, Eyring and Reese[239] and Flynn and
Yalkowsky.[240,241] Assuming independent and additive resis-
tances of the two individual layers, the total resistance (RT) of
a simple membrane (Figure 2) can be defined as:

R R RT D M= + (5)

where RD and RM are the resistances in the UWL at the exterior
and within the membrane, respectively. Since the permeability
constants (P) are the reciprocals of the resistances, the follow-
ing equation is obtained, assuming sink conditions (i.e.
CV - CD ª CV and C1 - C2 ª C1 in Figure 2):

J P C R R C
P P

CT V D M V
D M

V= ⋅ = + ⋅ = +⎛
⎝⎜

⎞
⎠⎟

⋅−
−

( ) 1
1

1 1
(6)

where J is the flux of the drug through the membrane, PT is the
overall permeability coefficient, CV is the concentration of the
compound in the vehicle (i.e. donor phase), and PD and PM are
the permeability coefficients in the UWL at the donor side and
within the membrane, respectively. Rearranging Equation 6
gives:

J
P P

P P
CD M

D M
V= ⋅

+
⎛
⎝⎜

⎞
⎠⎟
⋅ (7)

If permeation is much slower through the membrane itself
than the UWL (i.e. PD > PM), then Equation 7 becomes:

J
P P

P P
C

P P

P
C P CD M

D M
V

D M

D
V M V= ⋅

+
⎛
⎝⎜

⎞
⎠⎟
⋅ ≈ ⋅⎛

⎝⎜
⎞
⎠⎟
⋅ = ⋅ (8)

In that case, the UWL only has negligible effect on the
drug permeation through the membrane and can be ignored
(i.e. RM > RD). This can, for example, be the case when rela-
tively large and/or hydrophilic molecules permeate mucosa

Aqueous
solution

Direction of drug permeation

D
ru

g
 c

o
n

ce
n

tr
at

io
n

=

UWL
RD

Membrane
RM

C2

DD·(CV – CD)
hD

DDJD

·CD

CD

CV
= KM/DC1

hD

hD hM

·CV = PD·CV≈

=
DM·(C1 – C2)

hM

DM·KM/DJM
hM

·CD = PM·CD≈

Figure 2 Scheme showing drug permeation through a simple two-layer
barrier consisting of an unstirred water layer (UWL) and a lipophilic cell
membrane. The aqueous solution is the vehicle containing the dissolved
drug, RD, hD, RM and hM are the resistance and the thickness of the UWL
(D) and the membrane (M), respectively. CV is the drug concentration in
the vehicle, CD is the drug concentration in the UWL immediate to
the membrane surface, C1 and C2 are the drug concentrations within the
membrane at the outer and inner surface, respectively, DD and DM are the
drug diffusion constants in the UWL and the membrane, respectively, and
KM/D is the drug partition coefficient between the membrane and the
UWL. The equations represent Fick’s first law where the fluxes through
the UWL (JD) and the lipophilic membrane (JM) are the product of drug
diffusion coefficients (D), the drug concentration gradients and the thick-
ness of the barriers (h)
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(e.g. some BCS Class III drugs). If, on the other hand, per-
meation through the membrane is much faster than perme-
ation through the UWL (i.e. PM > PD) Equation 7 becomes:

J
P P

P P
C

P P

P
C P CD M

D M
V

D M

M
V D V= ⋅

+
⎛
⎝⎜

⎞
⎠⎟
⋅ ≈ ⋅⎛

⎝⎜
⎞
⎠⎟
⋅ = ⋅ (9)

In this case the UWL is the main barrier (i.e. RD > RM) and
drug permeation through the membrane becomes aqueous
diffusion layer-controlled. This can for example be the case
when relatively small and lipophilic molecules permeate
mucosa (e.g. some BCS Class II drugs). The relationship
between the permeation coefficient (P) and the diffusion coef-
ficient (D) is given by Equation 10:

P
D K

h
= ⋅

(10)

where h is the thickness (hD or hM in Figure 2) and K is the
partition coefficient between the aqueous phase and the mem-
brane. For PD value of K is unity. Finally D can be estimated
from the Stokes–Einstein equation:

D
R T

r N
≈ ⋅

⋅ ⋅ ⋅6π η (11)

where R is the molar gas constant, T is the absolute tempera-
ture, h is the apparent viscosity within the UWL or the lipo-
philic membrane, r is the radius of the permeating drug
molecule and N is Avogadro’s number. Thus, the diffusion
constant within the UWL (DD) will decrease with increasing
viscosity of the layer as well as with increasing molecular
weight of the permeating drug. Mucus on the surface of the
epithelial cell layer forms a kind of hydrogel on a lipophilic
surface where stagnant aqueous domains are located within a
polymer matrix. Mucus will increase the thickness (hD) of the
UWL and increased viscosity (h) will decrease the value of
DD that again will decrease the value of PD and increase the
value of RD.

Figure 3 shows the effect of relative drug-CD concentra-
tion on the ability of a poorly soluble lipophilic drug to per-
meate a biological membrane where the UWL forms an
aqueous diffusion barrier at the membrane surface. In other
words, where the drug flux through the membrane follows
Equation 9. In this example, the total amount of drug in the
aqueous donor phase (the vehicle) is kept constant but the
concentration of CD is between zero and twice the amount
needed to solubilize the drug in the donor phase. The vertical
broken line through the middle of the figure denotes the CD
concentration that is needed to solubilize the entire amount of
drug that is present in the donor phase. At lower CD concen-
trations, the drug is in a suspension but in solution at higher
concentrations. At CD concentrations below the broken line,
the donor phase consists of drug saturated CD solution but
unsaturated solution at higher CD concentrations. The total
concentration (Stot) of dissolved drug (i.e. both free ([drug])
and dissolved in a drug/CD complex ([drug/CD])) increases

as the CD concentration increases until all drug in the donor
phase has been dissolved (see Figure 3, middle). After that
point, the concentration remains constant. However, the con-
centration of free drug (Sfree) will be affected. It is constant and
equal to the intrinsic solubility (S0) in drug-saturated CD
solutions but decreases as the solution becomes unsaturated at

Total cyclodextrin concentration

Drug suspension Drug solution

C
o

n
c.

 o
f 

d
ru

g
 in

 s
o

ln
.

Th
e 

d
ru

g
 f

lu
x 

(J
)

K
M

/D
Stot = [drug] + [drug/CD]

Sfree = [drug]

Figure 3 The effect of CD solubilization on drug permeation from an
aqueous donor phase through a biological membrane where the UWL is
the rate-limiting barrier. The drug concentration is kept constant and the
CD is increased in such a way that at low CD concentration the drug is
only partly solubilized in the donor phase but excess CD, more than is
needed to solubilize the drug, is present in the donor phase at high CD
concentration. Top: the drug flux (J) through the membrane; middle: the
total concentration of dissolved drug (Stot) in the donor phase and the
concentration of dissolved free drug (i.e. that is not in a CD complex
(Sfree)) in the donor phase; bottom: the observed drug partition coefficient
between the lipophilic membrane and its aqueous exterior (i.e. the
aqueous diffusion layer (KM/D)).
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CD concentrations above the broken vertical line. Below the
line, the activity of the drug (a2 in Equations 2 and 3; aW in
Equation 4) is equal to unity but decreases as the CD concen-
tration increases above the broken vertical line. As the
aqueous drug donor solution becomes more unsaturated, the
value of gD (i.e. gw in Equation 4) becomes smaller. This
change in gD will affect the observed drug partition coefficient
(KM/D) between the lipophilic membrane and its aqueous exte-
rior (see Figure 2):

μ μθ θ
D M M

D
M D

RT
ln

Y

Y
lnK

− − ≈ / (12)

KM/D remains constant as long as activity (i.e. aD = gD·CD)
remains constant but decreases as the value of gD decreases
(Figure 3, bottom). Thus, when CD is added as a solubilizer to
aqueous formulations to enhance drug delivery through a
membrane where the UWL forms an aqueous diffusion barrier
and the flux follows Equation 9, the following will be
observed:
• When excess solid drug is present (i.e. aqueous drug sus-

pension), adding CD to the donor phase will increase the
concentration gradient over the UWL (i.e. CV - CD in
Figure 2) and consequently the flux (i.e. JD in Figure 2) will
increase. This will increase the overall availability of drug
(i.e. both free drug and drug/CD complex) at the membrane
surface and, since the drug release from the drug/CD
complex is much faster than permeation of free drug
through the UWL, the increase in drug/CD complex avail-
ability will increase drug delivery through the membrane.

• If all drug is in solution, addition of CD to the donor phase
will decrease the availability of free drug at the aqueous
membrane exterior. Also, increasing the CD concentration

will decrease the value of gD (i.e. the aqueous solution will
be less saturated). This will decrease the KM/D-value and,
consequently, decreases the drug flux (JM) through the
membrane (see Figure 2). When excess CD is present the
permeation switches from a diffusion-controlled to a
membrane-controlled (i.e. PD > PM) process.

• Maximum drug flux through the membrane is obtained
when just enough CD is added to solubilize the entire drug
in the aqueous donor phase (at the broken vertical line in
Figure 3). At that CD concentration, the concentration of
dissolved drug is at its maximum and at the same time the
drug has its highest potential to leave the vehicle and per-
meate into and through the membrane barrier. Conse-
quently, at this CD concentration the drug bioavailability is
at its maximum.

Formulation with CDs

The effect of CDs on drug permeation depends also on the
interaction between the drug and the CD. The effect of
HPbCD on the flux (J) of three different drugs was deter-
mined through PAMPA membrane (Table 6).[219] In the
PAMPA, it was found that a UWL thickness (hD) of 40 mm or
less did not affect the drug permeation through the membrane
while an hD of 100 mm or more had significant effect. In other
words, when no CD was present, the permeation was
membrane-controlled at hD � 40 mm but diffusion-controlled
at hD � 100 mm. The three drugs have comparable physico-
chemical properties but different affinities towards HPbCD
with K1:1 ranging from 23 m-1 to 1340 m-1. In the absence of
HPbCD, the value of J was two- to four-fold larger at hD of
40 mm than at hD > 100 mm. Addition of HPbCD decreases the
effect of the UWL but the effect depended on the ability of
drug from complex with HPbCD. Thus, HPbCD had no effect

Table 6 The physicochemical properties of griseofulvin, carbamazepine and hydrocortisone and the effect of the stability constant of the 1 : 1
drug/HPbCD complex (K1:1) and thickness of the UWL (hD) on the flux in the PAMPA system

O
O

O

Cl

H3CO
H3C

OCH3 OCH3

N

NH2O

O

CH3

HO
CH3 OH

O

OH

Properties Griseofulvin Carbamazepine Hydrocortisone

Molecular weight of anhydrous
compound (Da)a

352.8 236.3 362.5

Melting point (°C)a 217–224 189–193 214
Calculated LogK(octanol/water)

a 2.2 2.5 1.6
Solubility in water at 25°C (mg/ml)b 0.03 0.2 0.3
Apparent K1:1 at room temperature (m-1)b 23 650 1340

Flux (J) ¥ 106 at room temperature
(mg cm-2 s-1)b

hD > 100 mm hD = 40 mm hD > 100 mm hD = 40 mm hD > 100 mm hD = 40 mm

0% (w/v) HPbCD 0.095 � 0.014 0.254 � 0.037 3.56 � 0.27 12.5 � 0.9 4.82 � 1.09 11.7 � 0.7
1% (w/v) HPbCD 0.433 � 0.034 1.55 � 0.31 8.83 � 0.90 12.4 � 0.6 15.7 � 6.1 12.8 � 0.2
5% (w/v) HPbCD 0.710 � 0.261 2.38 � 0.38 14.1 � 6.3 15.2 � 4.2 24.8 � 9.8 15.0 � 2.3
10% (w/v) HPbCD – – 17.3 � 4.6 17.3 � 4.6 19.0 � 4.4 14.6 � 4.4

aFrom [205]. bFrom [219]. The aqueous pH 7.4 donor phase solutions containing from 0 to 10% (w/v) HPbCD were saturated with the drug to be tested.
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on the J of griseofulvin (K1:1 = 23 m-1) through the PAMPA
membrane, had a significant effect on carbamazepine
(K1:1 = 650 m-1) and a very significant effect on hydrocorti-
sone (K1:1 = 1340 m-1). The effect increased with increasing
K1:1-value.

Since the availability of a drug depends on the ability of the
drug molecules to interact with the CD molecules and the
drug : CD concentration ratio and since the drug–CD interac-
tion is affected by other excipients present in the drug formu-
lation, it is of uttermost importance to optimize the final drug
formulation with regard to the amount of CD. Too much or too
little CD will result in less than optimal drug availability.
Acetazolamide was formulated as an aqueous 1.0% (w/v) eye
drop solution.[242] The HPbCD solubilization of acetazolamide
was enhanced by the excipients commonly used in eye drops
(i.e. the preservatives and hydroxypropyl methylcellulose),
and consequently about 40% less HPbCD was needed to
solubilize the drug in the aqueous eye drop formulation than
in pure water (Figure 4). The release of acetazolamide was
also influenced by the HPbCD concentration (Figure 5).
Maximum release was obtained when just enough CD was
used to solubilize the drug (18% (w/v) HPbCD). This low-
viscosity eye drop solution containing 1.0% (w/v) acetazola-
mide and 18% (w/v) HPbCD had a notable intraocular
pressure lowering effect in rabbits.[72,242]

Conclusions

In general, CDs enhance drug delivery through biological
membranes by increasing drug permeation through the UWL
(i.e. by increasing the availability of dissolved drug molecules
juxtaposed to the membrane surface). CDs only enhance drug

permeation when UWL is present at the membrane exterior.
This UWL can consist of mucus or an aqueous vehicle such as
o/w creams or hydrogels, or simply as unstirred aqueous donor
phases in in-vitro experiments. CDs do not enhance drug
permeation from vehicles that do not form an UWL, such as
ointments and w/o creams. The effect also depends on the
physicochemical properties of the drug. Better enhancement is
obtained for lipophilic drugs that are poorly soluble in water
and that form water-soluble complexes with CDs with stability
constants (K1:1) that are between about 50 m-1 and 5000 m-1.
Finally, it is of uttermost importance to optimize the drug
vehicle with regard to the amount of CD. Too much or too little
CD will result in less than optimal drug bioavailability.
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